A Mixed Stress/Displacement Approach Model of Homogeneous Shells for Elastodynamic Problems

Author:

Domínguez Alvarado Axel Fernando1ORCID,Díaz Díaz Alberto1ORCID

Affiliation:

1. Centro de Investigación en Materiales Avanzados S.C. Miguel de Cervantes 120, Complejo Industrial Chihuahua, 31136 Chihuahua, Mexico

Abstract

This paper presents the development of a model of homogeneous, moderately thick shells for elastodynamic problems. The model is obtained by adapting and modifying SAM-H model (stress approach model of homogeneous shells) developed by Domínguez Alvarado and Díaz in (2018) for static problems. In the dynamic version of SAM-H presented herein, displacements and stresses are approximated by polynomials of the out-of-plane coordinate. The stress approximation coincides with the static version of SAM-H when dynamic effects are neglected. The generalized forces and displacements appearing in the approximations are the same as those involved in a classical, moderately thick shell model (CS model) but the stress approximation adopted herein is more complex: the 3D motion equations and the stress boundary conditions at the faces of the shell are verified. The generalized motion and constitutive equations of dynamic SAM-H model are obtained by applying a variant of Euler–Lagrange equation which includes pertinently Hellinger–Reissner functional. In the constitutive equations, Poisson’s effect of out-of-plane normal stresses on in-plane strains is not ignored; this is one important feature of SAM-H. To test the accuracy of dynamic SAM-H model, the following structures were considered: a hollow sphere and a catenoid. In each case, eigenfrequencies are first calculated and then a frequency analysis is performed applying a harmonic load. The results are compared to those of a CS model, MITC6 (mixed interpolation of tensorial components with 6 nodes per element) shell element calculations, and solid finite element computations. In the two problems, CS, MITC6, and dynamic SAM-H models yield accurate eigenfrequencies and eigenmodes. Nevertheless, the frequency analysis performed in each case showed that dynamic SAM-H provides much more accurate amplitudes of stresses and displacements than the CS model and the MITC6 shell finite element technique.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3