Hellinger–Reissner variational principle for a class of specified stress problems

Author:

Wang Jialin1,Zhang Junbo1,Chen Zhuo1,He Lin1

Affiliation:

1. Chongqing Jiaotong University , NO.66 Xuefu Road, 400074 , Chongqing , China

Abstract

Abstract Aiming at the problem of the specified stress condition in a partial region of the structure, the Hellinger–Reissner (H–R) variational principle is studied to provide a theoretical basis for the finite element numerical analysis. By introducing the unknown non-elastic strain as an additional unknown quantity to fulfill the specified stress condition, the elastic mechanics governing equations for the specified stress problem are given. Both stress and unknown non-elastic strain are taken as independent variables to establish the complementary energy principle and virtual work equation which are equivalent to the elastic mechanical control equation of the specified stress problem. Based on the conventional H–R variational principle, using displacement, stress and unknown non-elastic strain as independent variables, a H–R variational functional that satisfies the specified stress conditions is established by using Lagrange multiplier method. Also the variational functional with displacement, elastic strain and unknown non-elastic strain as independent variables is deduced by transforming the stress into the elastic strain. The corresponding finite formulae are derived based on an intra-element stress hybridization method. The H–R variational principle for the specified stress problem takes non-elastic strain as an independent variable, so that the stress explicitly appears in the equilibrium equation of the element and structure, which expands the application range and capabilities of the existing variational principle and finite element method. The correctness and accuracy of the theory and algorithm are verified by numerical examples.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Physics and Astronomy,Mechanics of Materials,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3