Exploiting the Potential of Moringa oleifera Oil/Polyvinyl Chloride Polymeric Bionanocomposite Film Enriched with Silver Nanoparticles for Antimicrobial Activity

Author:

Amina Musarat1ORCID,Al Musayeib Nawal M.1ORCID,Alarfaj Nawal A.2,El-Tohamy Maha F.2ORCID,Orabi Hisham E.3,Bukhari Sarah I.4,Mahmoud Amany Z.4

Affiliation:

1. Department of Pharmacognosy, Pharmacy College, King Saud University, Riyadh 11451, Saudi Arabia

2. Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia

3. Deanship of Scientific Research, Umm Al-Qura University, Makkah, Saudi Arabia

4. Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

Abstract

The present study focused on the prospect of fabricating a polymeric naturally extracted Moringa oleifera oil bionanocomposite film enriched with silver nanoparticles for antimicrobial activity. In this study, a standard concentration of Moringa oleifera oil (5-10 wt%) was used to fabricate a polymeric bionanocomposite film using polyvinyl chloride (PVC) enriched with silver nanoparticles. The active constituents of the extracted Moringa oleifera oil were verified using gas chromatography-mass spectrometry. Spectroscopic and microscopic techniques, including scanning electron microscopy, X-ray diffraction, and energy-dispersive X-ray analysis, were employed to characterize and study the surface morphology of the fabricated bionanocomposite film. The antimicrobial activity of the fabricated bionanocomposite film was investigated using different strains of bacteria and fungus. The results revealed well-oriented and excellently dispersed silver nanoparticles in the PVC-Moringa oleifera oil matrix. The bionanocomposite was able to inhibit the growth of Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Salmonella typhi, Pseudomonas aeruginosa, Shigella flexneri, and Candida albicans. The combination of nanoparticles with polymers is opening new routes for engineering fixable composites, which showed antimicrobial properties.

Funder

Deanship of Scientific Research, King Saud University

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3