Unsteady MHD Williamson Fluid Flow with the Effect of Bioconvection over Permeable Stretching Sheet

Author:

Asjad Muhammad Imran1ORCID,Zahid Muhammad1,Ali Bagh2,Jarad Fahd345ORCID

Affiliation:

1. Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan

2. Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, China

3. Department of Mathematics, Cankaya University, 06790 Etimesgut, Ankara, Turkey

4. Department of Mathematics, King Abdulaziz University, Saudi Arabia

5. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

Abstract

The unsteady flow of Williamson fluid with the effect of bioconvection in the heat and mass transfer occurring over a stretching sheet is investigated. A uniform magnetic field, thermal radiation, thermal dissipation, and chemical reactions are taken into account as additional effects. The physical problem is formulated in the form of a system of partial differential equations and solved numerically. For this purpose, similarity functions are involved to transmute these equations into corresponding ordinary differential equations. After that, the Runge-Kutta method with shooting technique is employed to evaluate the desired findings with the utilization of a MATLAB script. As a result, the effects of various physical parameters on the velocity, temperature, and nanoparticle concentration profiles as well as on the skin friction coefficient and rate of heat transfer are discussed with the aid of graphs and tables. The parameters of Brownian motion and thermophoresis are responsible for the rise in temperature and bioconvection Rayleigh number diminishes the velocity field. This study on nanofluid bioconvection has been directly applied in the pharmaceutical industry, microfluidic technology, microbial improved oil recovery, modelling oil and gas-bearing sedimentary basins, and many other fields. Further, to check the accuracy and validation of the present results, satisfactory concurrence is observed with the existing literature.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3