The New Approach Research on Singing Voice Detection Algorithm Based on Enhanced Reconstruction Residual Network

Author:

Liu Lilin1ORCID

Affiliation:

1. College of Music and Dance, Shenzhen University, Shenzhen, Guangdong, China

Abstract

With the development of Internet technology, multimedia information resources are increasing rapidly. Faced with the massive resources in the multimedia music library, it is extremely difficult for people to find the target music that meets their needs. How to realize computer analysis and perceive users’ needs for music resources has become the goal of the future development of human-computer interaction capabilities. Content-based music information retrieval applications are mainly embodied in the automatic classification and recognition of music. Traditional feedforward neural networks are prone to lose local information when extracting singing voice features. For this reason, on the basis of fully considering the impact of information persistence in the network propagation process, this paper proposes an enhanced two-stage super-resolution reconstruction residual network which can effectively integrate the learned features of each layer while increasing the depth of the network. The first stage of reconstruction is to complete the hierarchical learning of singing voice features through dense residual units to improve the integration of information. The second stage of reconstruction is mainly to perform residual relearning on the high-frequency information of the singing voice learned in the first stage to reduce the reconstruction error. In the middle of these two stages, the model introduces feature scaling and expansion convolution to achieve the dual purpose of reducing information redundancy and increasing the receptive field of the convolution kernel. A monophonic singing voice separation based on the high-resolution neural network is proposed. Because the high-resolution network has parallel subnetworks with different resolutions, it also has original resolution representations and multiple low-resolution representations, avoiding information loss caused by serial network downsampling effects and repeating multiple feature fusions to generate new semantic representations, allowing for the learning of comprehensive, high-precision, and highly abstract features. In this article, a high-resolution neural network is utilized to model the time spectrogram in order to correctly estimate the real value of the anticipated time-amplitude spectrograms. Experiments on the dataset MIR-1K show that compared with the current leading SH-4Stack model, the method in this paper has improved SDR, SIR, and SAR indicators for measuring the separation performance, confirming the effectiveness of the algorithm in this paper.

Publisher

Hindawi Limited

Subject

General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3