Author:
Sun Chao,Zhang Min,Wu Ruijuan,Lu Junhong,Xian Guo,Yu Qin,Gong Xiaofeng,Luo Ruisen
Abstract
AbstractMost speech separation studies in monaural channel use only a single type of network, and the separation effect is typically not satisfactory, posing difficulties for high quality speech separation. In this study, we propose a convolutional recurrent neural network with an attention (CRNN-A) framework for speech separation, fusing advantages of two networks together. The proposed separation framework uses a convolutional neural network (CNN) as the front-end of a recurrent neural network (RNN), alleviating the problem that a sole RNN cannot effectively learn the necessary features. This framework makes use of the translation invariance provided by CNN to extract information without modifying the original signals. Within the supplemented CNN, two different convolution kernels are designed to capture information in both the time and frequency domains of the input spectrogram. After concatenating the time-domain and the frequency-domain feature maps, the feature information of speech is exploited through consecutive convolutional layers. Finally, the feature map learned from the front-end CNN is combined with the original spectrogram and is sent to the back-end RNN. Further, the attention mechanism is further incorporated, focusing on the relationship among different feature maps. The effectiveness of the proposed method is evaluated on the standard dataset MIR-1K and the results prove that the proposed method outperforms the baseline RNN and other popular speech separation methods, in terms of GNSDR (gloabl normalised source-to-distortion ratio), GSIR (global source-to-interferences ratio), and GSAR (gloabl source-to-artifacts ratio). In summary, the proposed CRNN-A framework can effectively combine the advantages of CNN and RNN, and further optimise the separation performance via the attention mechanism. The proposed framework can shed a new light on speech separation, speech enhancement, and other related fields.
Funder
the University-Enterprise Cooperation Project
Sichuan Science and Technology Program
Publisher
Springer Science and Business Media LLC
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献