A convolutional recurrent neural network with attention framework for speech separation in monaural recordings

Author:

Sun Chao,Zhang Min,Wu Ruijuan,Lu Junhong,Xian Guo,Yu Qin,Gong Xiaofeng,Luo Ruisen

Abstract

AbstractMost speech separation studies in monaural channel use only a single type of network, and the separation effect is typically not satisfactory, posing difficulties for high quality speech separation. In this study, we propose a convolutional recurrent neural network with an attention (CRNN-A) framework for speech separation, fusing advantages of two networks together. The proposed separation framework uses a convolutional neural network (CNN) as the front-end of a recurrent neural network (RNN), alleviating the problem that a sole RNN cannot effectively learn the necessary features. This framework makes use of the translation invariance provided by CNN to extract information without modifying the original signals. Within the supplemented CNN, two different convolution kernels are designed to capture information in both the time and frequency domains of the input spectrogram. After concatenating the time-domain and the frequency-domain feature maps, the feature information of speech is exploited through consecutive convolutional layers. Finally, the feature map learned from the front-end CNN is combined with the original spectrogram and is sent to the back-end RNN. Further, the attention mechanism is further incorporated, focusing on the relationship among different feature maps. The effectiveness of the proposed method is evaluated on the standard dataset MIR-1K and the results prove that the proposed method outperforms the baseline RNN and other popular speech separation methods, in terms of GNSDR (gloabl normalised source-to-distortion ratio), GSIR (global source-to-interferences ratio), and GSAR (gloabl source-to-artifacts ratio). In summary, the proposed CRNN-A framework can effectively combine the advantages of CNN and RNN, and further optimise the separation performance via the attention mechanism. The proposed framework can shed a new light on speech separation, speech enhancement, and other related fields.

Funder

the University-Enterprise Cooperation Project

Sichuan Science and Technology Program

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3