Research on the Utilization of Metro Regenerative Braking Energy Based on an Improved Differential Evolution Algorithm

Author:

Liu Di1ORCID,Zhu Song-Qing1,Bi Yun-Rui1,Liu Kun1,Xu You-Xiong1

Affiliation:

1. School of Automation, Nanjing Institute of Technology, Nanjing, 211167, China

Abstract

Urban metro trains have the characteristics of short running distance between stations and frequent starting and braking. A large amount of regenerative braking energy is generated during the braking process. The effective utilization of the regenerative braking energy can substantially reduce the total energy consumption of train operation. In this paper, we establish two integer programming models of train operation that maximize the overlap time between train traction and braking in peak hours and nonpeak hours. On this basis, an improved differential evolution (IDE) algorithm is developed for solving the two integer programming models. The results demonstrate that the overlap time increases by 51.44% after optimization using the IDE algorithm when the headway is set to 154 s in peak hours. The overlap time is further increased by 14.87% by optimizing the headway. In nonpeak hours, the overlap time of traction and braking of the trains in opposite directions at the same station is increased by optimizing the bidirectional departure interval, thereby reducing the total energy consumption of the system.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3