Chemical Kinetic Study on Dual-Fuel Combustion: The Ignition Properties of n-Dodecane/Methane Mixture

Author:

Zhou Weijian1ORCID,Zhou Song1ORCID,Xi Hongyuan1ORCID,Shreka Majed1,Zhang Zhao1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

The natural gas (NG)/diesel dual-fuel engine has attracted extensive attention in recent years, and the influence of ignition delay on the engine is very important. Therefore, the research on the ignition delay of NG/diesel dual fuel is of great significance. In this work, a simplified n-dodecane mechanism was used to study the effect of methane mixture ratio on the n-dodecane ignition process. The results showed that the ignition delay time increased with the increase of methane content by changing the mixing ratio of methane and n-dodecane. However, the effect of methane on the ignition delay time gradually decreases when the content of the n-dodecane mixing ratio is greater than 50%. It was also found that with the increase of n-dodecane content, the reduction degree of the ignition delay time of the whole reaction system decreased and the negative temperature coefficient (NTC) behavior increased. Moreover, when the initial pressure increased from 20 bar to 60 bar, the thermal effect of methane also increases from 7.03% to 9.55%. The relationship between ignition characteristics of methane-n-dodecane and temperature was studied by changing the initial temperature. Furthermore, the evolution of species in the ignition process of the whole reaction system was analyzed, and the decomposition of n-dodecane first occurs in the reaction n-C12H26 + O2 = R + HO2 to form R and free radicals; however, the reaction CH4 + OH = CH3 + H2O dominates with the increase of the methane mixing ratio and inhibits the ignition process. Through the analysis of reaction paths, sensitivity, and rates of production and consumption of methane/n-dodecane, it was explained how n-dodecane accelerates methane ignition through the rapidly formed free radicals.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3