Affiliation:
1. School of Mines, Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, China University of Mining and Technology, Xuzhou 221116, China
2. Department of Civil, Environmental and Mining Engineering, The University of Western Australia, Perth 6009, Australia
Abstract
Rubberized concrete (RC) has attracted more attention these years as it is an economical and environmental-friendly construction material. Normally, the uniaxial compressive strength (UCS) of RC needs to be evaluated before application. In this study, an evolutionary random forest model (BRF) combining random forest (RF) and beetle antennae search (BAS) algorithms was proposed, which can be used for establishing the relationship between UCS of RC and its key variables. A total number of 138 cases were collected from the literature to develop and validate the BRF model. The results showed that the BAS can tune the RF effectively, and therefore, the hyperparameters of RF were obtained. The proposed BRF model can accurately predict the UCS of RC with a high correlation coefficient (0.96). Furthermore, the variable importance was determined, and the results showed that the age of RC is the most significant variable, followed by water-cement ratio, fine rubber aggregate, coarse rubber aggregate, and coarse aggregate. This study provides a new method to access the strength of RC and can efficiently guide the design of RC in practice.
Funder
National Key Research and Development Program
Subject
Civil and Structural Engineering
Cited by
83 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献