A comparison between geomembrane-sand tests and machine learning predictions

Author:

Tanga A. T.1,S. Araújo G. L.2,Evangelista Junior F.2

Affiliation:

1. PhD student, Department of Civil and Environmental Engineering, FT, University of Brasilia, Brasilia, DF, Brazil,(corresponding author)

2. Associate Professor, Department of Civil and Environmental Engineering, FT, University of Brasilia, Brasilia, DF, Brazil,

Abstract

The interaction between soils and geosynthetics plays an important role in the applications of these materials for reinforcement in geotechnical engineering. The complexities of soil-geosynthetic interactions vary depending on the type and properties of both the geosynthetic and the soil. This paper introduces a machine learning approach, specifically a random forest algorithm, for predicting interface friction angles. The dataset comprises 495 interfaces involving geomembranes and sand, with 14 influencing parameters recorded for each interface, influencing the shear strength outcome. In the analysis, Pearson's correlation coefficient is employed to measure the linear interdependence between each pair of input-input and input-output variables. Following the linear regression analysis, an optimized random forest is utilized to project the interface friction angle. The random forest algorithm divides the selected data into training and testing sets, and only 3% of the training set and 6% of the testing set exceed ±5° from the actual records. The coefficient of determination (R2) indicates strong agreement between the predicted and laboratory study friction angles, with R2 = 0.93 for the training set and R2 = 0.92 for the testing set. Consequently, the random forest algorithm demonstrates effectiveness in predicting interface friction angles.

Publisher

Emerald

Reference49 articles.

1. Afonso, M. R. F. L. (2009). Direct Shear Tests in the Characterization of the Geosynthetic Soil Interface: Effect of Normal Stress Variation. Masters dissertation, University of Porto, Porto, Portugal, 82p. (in Portuguese).

2. Influence of micro and macroroughness of geomembrane surfaces on soil-geomembrane and geotextile-geomembrane interface strength

3. Shear strength behavior of geotextile/geomembrane interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3