Integrated Optimization of Tram Schedule and Signal Priority at Intersections to Minimize Person Delay

Author:

Zhou Wen1,Bai Yun1ORCID,Li Jiajie1ORCID,Zhou Yuhe1ORCID,Li Tang2ORCID

Affiliation:

1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Beijing Jiaotong University, Beijing 100044, China

2. Department of Civil and Environmental Engineering, Imperial College London, London, SW7 2AZ, UK

Abstract

Modern trams, as a rapidly developed high-volume transport model, have strict requirements on schedule, because the delay will reduce the attractiveness of public transportation to passengers. To improve punctuality and reliability, Transit Signal Priority (TSP) has been employed at intersections, which can extend or insert green phase to trams. However, extending or inserting the green phase for every tram might lead to heavy delays to crossing vehicles. To address this problem, this study developed an integrated optimization model on tram schedule and signal priority which can balance the delay between trams and other vehicles to minimize person delay. Three conditional strategies named early green, green extension, and phase insertion are proposed for the signal priority. Simultaneously, arrival time, departure time of trams at stations, and stop line are optimized as well. The proposed model is tested with a numerical case and a real-world case at Ningbo tramline in China. The results indicate that the integrated optimization can reduce the average delay of all passengers on trams and other vehicles, compared to timetable optimization only and TSP only. It is also found that the proposed model is able to adapt to the fluctuation in the ratio of tram passenger to auto vehicle user, compared with only minimizing tram passenger delay or auto vehicle user delay.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3