Enhancing Intersection Performance for Tram and Connected Vehicles through a Collaborative Optimization

Author:

Louati Ali12ORCID,Kariri Elham1

Affiliation:

1. Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia

2. SMART Laboratory, Higher Institute of Management of Tunis, University of Tunis, Bardo 2000, Tunisia

Abstract

This article tackles a pervasive problem in connected transportation networks: the issue of conflicting right-of-way between trams and Connected Vehicles (CV) at intersections. Trams are typically granted a semi-exclusive right-of-way, leading to a clash with CV. To resolve this challenge, the study introduces a Transit Signal Priority (TSP) system and a guidance framework that seeks to minimize unintended delays for trams while minimizing the negative impact on CV, passenger comfort, energy consumption, and overall travel time. The proposed framework employs a collaborative optimization system and an improved genetic algorithm to adjust both the signal phase duration and the operating path. The study is based on data collected from a simulated intersection that includes the signal phase sequence and duration. The findings demonstrate that the proposed framework was able to reduce the transit time for trams by 45.8% and the overall transit time for trams 481 and CVs by 17.1% compared to the conventional method. Additionally, the system was able to reduce energy consumption by 34.7% and the non-comfort index by 25.8%. Overall, this research contributes to the development of a more efficient and sustainable transportation system for the future.

Funder

Prince Sattam bin Abdulaziz University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3