Activation of Most Toll-Like Receptors in Whole Human Blood Attenuates Platelet Deposition on Collagen under Flow

Author:

Liu Y.1,Diamond S. L.1ORCID

Affiliation:

1. Department of Chemical and Biomolecular Engineering, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA

Abstract

Platelets have toll-like receptors (TLRs); however, their function in thrombosis or hemostasis under flow conditions is not fully known. Thrombin-inhibited anticoagulated whole blood was treated with various TLR agonists and then perfused over fibrillar collagen using microfluidic assay at venous wall shear rate (100 s-1). Platelet deposition was imaged with fluorescent anti-CD61. For perfusion of whole blood without TLR agonist addition, platelets rapidly accumulated on collagen and eventually occluded the microchannels. Interestingly, most of the tested TLR agonists (Pam3CKS4, MALP-2, polyinosinic-polycytidylic acid HMW, imiquimod, and CpG oligodeoxynucleotides) strongly reduced platelet deposition on collagen, while only the TLR4 agonist endotoxin lipopolysaccharide (LPS) enhanced deposition. Following 90 sec of deposition under flow of untreated blood, the addition of various TLR-7 agonists (imiquimod, vesatolimod, and GSK2245035) all caused immediate blockade of further platelet deposition. Since TLR signaling can activate nuclear factor-kappaB (NF-κB), the IKK-inhibitor (IKK inhibitor VII) and NF- κ B inhibitor (Bay 11-7082) were tested. The IKK/NF-κB inhibitors strongly inhibited platelet deposition under flow. Furthermore, addition of Pam3CSK4 (TLR1/2 ligand), MALP-2 (TLR2/6 ligand), and Imquimod (TLR7 ligand) reduced phosphotidylserine (PS) exposure. Activation of TLR1/2, TLR2/6, TLR3, TLR7, and TLR9 in whole blood reduced platelet deposition under flow on collagen; however, LPS (major Gram negative bacterial pathogenic component) activation of LTR4 was clearly prothrombotic.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Immunology,General Medicine,Immunology and Allergy

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3