Development of a Daily Databank of Solar Radiation Components for Moroccan Territory

Author:

Benchrifa Mohammed1ORCID,Essalhi Hajar1,Tadili Rachid1,Bargach Mohammed N.1,Mechaqrane Abdellah2

Affiliation:

1. Mohammed V University of Rabat, Faculty of Science, B. P 1014 Rabat, Morocco

2. Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology, B. P, Fez, Morocco

Abstract

The main objective of this work is to create a daily updated database that includes all components of solar radiation, either energetic or spectral radiation. This will lead us to quantify the Moroccan solar potential and to determine the dimensions of all types of solar thermal and photovoltaic systems. Consequently, the obtained database will be the fundamental support for engineers, designers, and all organizations interested in developing solar systems, in different regions throughout Morocco. It will also be a basic tool for researchers in modelling and simulating the new solar systems. Firstly, we used one year’s worth of measurements of the different components of the solar radiation, provided by the National Meteorological Department, to establish the extrapolation equations between the global radiation at the reference site and the global radiation of twenty-eight other sites. As well as with the same measurements, we developed the correlation equations between the global solar radiation and the other solar radiation components. Secondly, from ten years of Fez station’s daily global radiation measurements and through the extrapolation equations, we were able to estimate the global radiation of all Moroccan cities. Then, by using the obtained global radiation data and the correlation equations, we predicted the other components of solar radiation. Subsequently, with a new measurement campaign carried out on several sites, we validated the estimation models by using the usual statistical indicators. In addition, we compared our results with those obtained by other estimation models. The resulting differences for each solar component display the advantage of our model with errors under 6%. To facilitate the use of our results, we compiled them into maps representing the spread of solar radiation across Morocco.

Funder

Mohammed V University

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3