Effect of Thermal Treatment on Fractals in Acoustic Emission of Rock Material

Author:

Zhang Z. Z.1,Xu X. L.12,Sun Q. P.1,Dong Y.1

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China

2. School of Architecture and Civil Engineering, Nantong University, Nantong 226019, China

Abstract

Acoustic emission (AE) series on time and location distributions on space are all fractal during the failure process of rock material. In this paper, AE signals of heated rock samples at different temperature under uniaxial compression were captured, and the correlation fractal dimensions (CFDs) of AE counts series at different stress level were calculated using Grassberger-Procaccia algorithm. The temperature effect on AE fractal behavior was revealed. The results show that as the heat temperature increases, the total AE counts are more, while the peak value is less. With the increase of external loading, the AE CFD increases fast to a peak at first and then decreases to a bottom and, after that, increases again but within a narrow range. 200°C and 800°C are two thresholds. As the heat temperature rises, the maximum CFD value and the corresponding stress level both increase from 25°C to 200°C and decrease from 200°C to 800°C and then increase again from 800°C to 1200°C. The CFD value at the failure point shows polynomial decline with rising heat temperature.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3