Study on Acoustic Emission and Damage Mechanical Properties of Freeze-Thaw Sandstone under Uniaxial Compression

Author:

Liang Bo1ORCID,Yang Gengshe1,Yu Jinjie1

Affiliation:

1. College of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an, Shaanxi 710054, China

Abstract

The damage strength of freeze-thaw rock provides an important reference for stability evaluations used during rock engineering in cold regions. In this paper, real-time acoustic emission tests of saturated sandstone are performed after various freeze-thaw cycles to study the uniaxial compressive strength and deformation characteristics of the resulting materials. The macro-meso damage evolution law of loaded sandstone is studied under the action of freeze-thaw cycles. The results show the following: (1) The saturated water absorption of sandstone increases, the peak strength and elastic modulus loss rates of sandstone increase linearly, and the frost resistance of the rock decreases with the number of freeze-thaw cycles. The sandstone failure mode gradually shifts from splitting failure to complex splitting shear failure of the failure surface. (2) If fewer than 10 freeze-thaw cycles are applied, the ring count signals at the compaction stage and after the peak strength is reached are extremely weak under a uniaxial compression load. With additional freeze-thaw cycles, damage inside the rock accumulates gradually, and the ring count signal appears during the rock compaction stage, fluctuates up and down, and continues until the peak strength is reached. When the compressive strength reaches its peak, the ring count intensity signal increases suddenly, and the frequency is high. After the strength reaches its peak, the acoustic emission signal shows that the rock sample still has some residual strength. As the number of freeze-thaw cycles increases, the cumulative ring count of sandstone gradually changes from the jumping stage to gradual growth. The acoustic emission characteristic parameters and ring count reflect damage to and expansion of freeze-thaw sandstone. (3) The cumulative extent of rock damage reaches the threshold value under loading and increases linearly until the rock is destroyed. When more freeze-thaw cycles are used, the time required for the rock to reach this threshold value is shorter, and the time required for sandstone damage is reduced gradually. These results provide a reference for the study of freeze-thaw damage and rock stability in cold regions.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3