Frost heave in coarse-grained soils: experimental evidence and numerical modelling

Author:

Teng Jidong12,Liu Jianlong1,Zhang Sheng12,Sheng Daichao13

Affiliation:

1. School of Civil Engineering, Central South University, Changsha, P. R. China.

2. Hunan Provincial Key Laboratory for Disaster Prevention and Mitigation of Rail Transit Engineering Structure, Changsha, P. R. China.

3. School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW, Australia.

Abstract

Frost heave in coarse-grained soils caused by vapour transfer has attracted much attention, but little experimental or numerical evidence has been reported thus far. A series of laboratory experiments is carried out by a frost heave apparatus and an X-ray micro-computed tomography instrument. The only water supply mechanism to the tested specimen is vapour transfer. The results indicate that considerable frost heave occurs in coarse-grained soil specimens with a zero fines content. The ratio of frost heave to the initial height can reach 13·8% and 25·1% at 14 days and 18 days, respectively. Ice crystals first grow in pores causing the soil particle to rotate and move, and the soil porosity to increase. With continued ice crystal growth, they eventually become connected and form an ice lens. If a constant temperature gradient is applied, only one horizontal ice lens is formed, which differs from the layered ice lenses observed in fine-graded soils. A new numerical model is developed to simulate ice formation and frost heave in coarse-grained soils, which considers the process of vapour transfer and desublimation. The predicted frost heave results agree well with the measured results. This study provides a novel explanation for the frost heave mechanism in coarse-grained soils.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3