Dynamic Self-Occlusion Avoidance Approach Based on the Depth Image Sequence of Moving Visual Object

Author:

Zhang Shihui12ORCID,He Huan1ORCID,Zhang Yucheng1ORCID,Li Xin1ORCID,Sang Yu1ORCID

Affiliation:

1. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China

2. The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province, Qinhuangdao 066004, China

Abstract

How to avoid the self-occlusion of a moving object is a challenging problem. An approach for dynamically avoiding self-occlusion is proposed based on the depth image sequence of moving visual object. Firstly, two adjacent depth images of a moving object are acquired and each pixel’s 3D coordinates in two adjacent depth images are calculated by utilizing antiprojection transformation. On this basis, the best view model is constructed according to the self-occlusion information in the second depth image. Secondly, the Gaussian curvature feature matrix corresponding to each depth image is calculated by using the pixels’ 3D coordinates. Thirdly, based on the characteristic that the Gaussian curvature is the intrinsic invariant of a surface, the object motion estimation is implemented by matching two Gaussian curvature feature matrices and using the coordinates’ changes of the matched 3D points. Finally, combining the best view model and the motion estimation result, the optimization theory is adopted for planning the camera behavior to accomplish dynamic self-occlusion avoidance process. Experimental results demonstrate the proposed approach is feasible and effective.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive survey on human pose estimation approaches;Multimedia Systems;2022-08-16

2. Whole-Body MPC and Dynamic Occlusion Avoidance: A Maximum Likelihood Visibility Approach;2022 International Conference on Robotics and Automation (ICRA);2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3