Effects of HD-tDCS on Resting-State Functional Connectivity in the Prefrontal Cortex: An fNIRS Study

Author:

Yaqub M. Atif1,Woo Seong-Woo1,Hong Keum-Shik12ORCID

Affiliation:

1. School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea

2. Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea

Abstract

Functional connectivity is linked to several degenerative brain diseases prevalent in our aging society. Electrical stimulation is used for the clinical treatment and rehabilitation of patients with many cognitive disorders. In this study, the effects of high-definition transcranial direct current stimulation (HD-tDCS) on resting-state brain networks in the human prefrontal cortex were investigated by using functional near-infrared spectroscopy (fNIRS). The intrahemispheric as well as interhemispheric connectivity changes induced by 1 mA HD-tDCS were examined in 15 healthy subjects. Pearson correlation coefficient-based correlation matrices were generated from filtered time series oxyhemoglobin (ΔHbO) signals and converted into binary matrices. Common graph theory metrics were computed to evaluate the network changes. Systematic interhemispheric, intrahemispheric, and intraregional connectivity analyses demonstrated that the stimulation positively affected the resting-state connectivity in the prefrontal cortex. The poststimulation connectivity was increased throughout the prefrontal region, while focal HD-tDCS effects induced an increased rate of connectivity in the stimulated hemisphere. The graph theory metrics clearly distinguished the prestimulation and poststimulation networks for a range of thresholds. The results of this study suggest that HD-tDCS can be used to increase functional connectivity in the prefrontal cortex. The increase in functional connectivity can be explored clinically for neurorehabilitation of patients with degenerative brain diseases.

Funder

Busan Institute of S&T Evaluation and Planning

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3