Multielectrode Network Stimulation (ME-NETS) demonstrated by concurrent tDCS and fMRI

Author:

Ross David A.,Shinde Anant B.,Lerud Karl DORCID,Schlaug GottfriedORCID

Abstract

AbstractNon-invasive transcranial direct current stimulation (tDCS) can modulate activity of targeted brain regions. Whether tDCS can reliably and repeatedly modulate intrinsic connectivity of entire brain networks is unclear. We used concurrent tDCS-MRI to investigate the effect of high dose anodal tDCS on resting state connectivity within the Arcuate Fasciculus (AF) network, which spans the temporal, parietal, and frontal lobes and is connected via a structural backbone, the Arcuate Fasciculus (AF) white matter tract. Effects of high-dose tDCS (4mA) delivered via a single electrode placed over one of the AF nodes (single electrode stimulation, SE-S) was compared to the same dose split between multiple electrodes placed over AF-network nodes (multielectrode network stimulation, ME-NETS). While both SE-S and ME-NETS significantly modulated connectivity between AF network nodes (increasing connectivity during stimulation epochs), ME-NETS had a significantly larger and more reliable effect than SE-S. Moreover, comparison with a control network, the Inferior Longitudinal Fasciculus (ILF) network suggested that the effect of ME-NETS on connectivity was specific to the targeted AF-network. This finding was further supported by the results of a seed-to-voxel analysis wherein we found ME-NETS primarily modulated connectivity between AF-network nodes. Finally, an exploratory analysis looking at dynamic connectivity using sliding window correlation found strong and immediate modulation of connectivity during three stimulation epochs within the same imaging session.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3