Prediction of Cavitation Evolution and Cavitation Erosion on Centrifugal Pump Blades by the DCM-RNG Method

Author:

Zhu Han1ORCID,Qiu Ning1ORCID,Wang Chuan23,Si Qiaorui1,Wu Jie1,Deng Fanjie1,Liu Xiang1

Affiliation:

1. National Research Center of Pumps, Jiangsu University, Zhenjiang, 212013 Jiangsu, China

2. Hainan Vocational University of Science and Technology, Haikou, 571126 Hainan, China

3. College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009 Jiangsu, China

Abstract

Cavitation can reduce the efficiency and service life of the centrifugal pumps, and a long-term operation under cavitation conditions will cause cavitation damage on the surface of material. The external characteristic test of the IS65-50-174 single-stage centrifugal pump was carried out. Moreover, the cavitation mechanism under specific conditions was analyzed by numerical simulation. Considering the macroscopic cavitation flow structure in the centrifugal pump, three different cavitation erosion prediction methods were used to predict the erodible areas. The results show that the calculation results obtained by the density correction method (DCM) can well match the flow characteristics of the centrifugal pump under the rated conditions. When the centrifugal pump head drops by 3%, cavitation mainly occurs on the suction surface, and the cavity on the pressure surface is mainly concentrated near the front cover. The cavitation prediction method based on the time derivation of pressure change is not suitable for centrifugal pumps, while the prediction result of the erosive power method is more reasonable than the others. At time 0.493114 s, the maximum erosive power appears on the blade near the volute tongue, and its value is 1.46 e 04  W.

Funder

Entrepreneurial Doctor Program of Jiangsu Province

Publisher

Hindawi Limited

Subject

Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3