Axial-Flow Pump with Enhanced Cavitation Erosion Resistance

Author:

Zharkovskii Aleksandr1ORCID,Svoboda Dmitry1ORCID,Borshchev Igor1,Klyuyev Arsentiy1ORCID,Ivanov Evgeniy1ORCID,Shutsky Sergey2

Affiliation:

1. The World-Class Research Center “Advanced Digital Technologies”, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia

2. JSC “Central Design Bureau of Mechanical Engineering”, 190020 Saint Petersburg, Russia

Abstract

Axial-flow pumps, in addition to providing high anti-cavitation properties, must have high anti-erosion properties to ensure the required lifetime of the pump. Erosion damage of surfaces occurs when the net positive suction head (NPSH) significantly exceeds its critical value. The object of the study in this article is the axial-flow pump with a specific speed of 600 in two alternatives: № 1 and № 2. By analysis of the flow in the impeller blade systems, the ratio value between the NPSH, which ensures the absence of erosion, and the NPSH3, at which pump operational failure occurs, was determined. Impeller variant № 1 did not provide the required ratio. Impeller variant № 2 had higher cavitation qualities, and the required ratio was achieved for it. Energy, cavitation, and erosion characteristics of the axial-flow pump with impeller № 2 in rotational frequency n = 2000 rpm were investigated. Easily breakable paint coatings were used for the accelerated study of cavitation erosion. The experiment was carried out at three different flow rates and confirmed the assumptions made—the pump with impeller № 2 was not affected by cavitation erosion at the optimum flow rate. Patterns of erosion zones were accompanied by calculations of vapor zones in the impeller. At flow rates less than the optimum, cavitation disruptions occurred and appeared behind the vapor region. As a result, the condition of ensuring erosion-free flow in the impeller of an axial pump with a specific speed of 600 was obtained, ensuring the ratio NPSH/NPSH3 > 2.5. Recommendations on designing of erosion-free flow part of the axial pump impeller were also obtained.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3