HSPA8 Is a New Biomarker of Triple Negative Breast Cancer Related to Prognosis and Immune Infiltration

Author:

Ying Bicheng1,Xu Wenting1,Nie Yan2,Li Yongtao1ORCID

Affiliation:

1. Department of Breast Surgery, Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, China

2. Yanqing District Hospital of Traditional Chinese Medicine, Beijing, China

Abstract

Objective. Triple negative breast cancer (TNBC) is a kind of cancer that endangers the lives of women all over the world in the 21st century. Heat shock protein member 8 (HSPA8) is the chaperone gene of the heat shock protein family. It is involved in many cellular functions. For example, it promotes the circulation between ATP and ADP, participates in protein folding, and can change the vitality of the cell and inhibit its growth. However, the abnormal expression of HSPA8 gene in TNBC and its diagnostic and prognostic significance still need to be further studied. Methods. First, we used related databases (such as TCGA, GEO, GTEx, ONCOMINE, TIMER2.0, UALCAN, HPA, STRING, CCLE, and Kaplan-Meier plotter databases) to analyze the relationship between HSPA8 and TNBC by bioinformatics. Then, the analysis using only a small part of the experimental work is used to explain our findings. For example, HSPA8 protein expression was evaluated by immunohistochemical method in TNBC tissues. Western blotting experiments were carried out to verify the results. Then, the clinicopathological characteristics of patients with TNBC were analyzed by R software and Cox regression analysis. On the basis, a nomogram is constructed to estimate the 1-, 3-, and 5-year overall survival (OS). The prognostic nomogram performance was calibrated and evaluated by the calibration curve and receiver operating characteristic (ROC) curve. Results. In the study, we analyzed the three GEO databases (including GSE86945, GSE106977, and GSE102088) and found that HSPA8 is one of the central genes of TNBC. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) researches indicated that HSPA8 was mainly involved in partner-mediated autophagy, mRNA catabolism, neutrophil activation, immune response, protein targeting, RNA splicing, RNA catabolism, and other biological processes. Next, we used bioinformatics technology to find that the expression level of HSPA8 in breast cancer (BC) and TNBC samples was significantly higher than that in normal breast tissues, which was determined by analyzing hospital patient samples and related experiments. In addition, the expression level of HSPA8 in BC and TNBC samples was significantly correlated with clinical indexes such as TNM stage. The Cox analysis revealed that the expression of HSPA8 in TNBC had significant clinical prognostic value. The results of nomogram and ROC test show that HSPA8 has significant predictive ability in TNBC. The results of immune infiltration of HSPA8 through the TIMER2.0 database showed that there was a significant correlation between HSPA8 and immune cell subsets. Conclusions. Our results show that the expression of HSPA8 in TNBC has important clinical diagnostic significance and clarify the potential molecular mechanism that promotes the evolution of TNBC. The high expression of HSPA8 may be related with the poor clinical outcome of TNBC. This helps to provide us with a new direction of TNBC targeted therapy.

Funder

Natural Science Foundation of Xinjiang Province

Publisher

Hindawi Limited

Subject

Biochemistry (medical),Clinical Biochemistry,Genetics,Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3