Detection of Adulterated Honey by Fluorescence Excitation-Emission Matrices

Author:

Dramićanin Tatjana1ORCID,Lenhardt Acković Lea1,Zeković Ivana1ORCID,Dramićanin Miroslav D.1ORCID

Affiliation:

1. Vinča Institute of Nuclear Sciences, University of Belgrade, Belgrade 11001, Serbia

Abstract

Honey is a frequent target of adulteration through inappropriate production practices and origin mislabelling. Current methods for the detection of adulterated honey are time and labor consuming, require highly skilled personnel, and lengthy sample preparation. Fluorescence spectroscopy overcomes such drawbacks, as it is fast and noncontact and requires minimal sample preparation. In this paper, the application of fluorescence spectroscopy coupled with statistical tools for the detection of adulterated honey is demonstrated. For this purpose, fluorescence excitation-emission matrices were measured for 99 samples of different types of natural honey and 15 adulterated honey samples (in 3 technical replicas for each sample). Statistical t-test showed that significant differences between fluorescence of natural and adulterated honey samples exist in 5 spectral regions: (1) excitation: 240–265 nm, emission: 370–495 nm; (2) excitation: 280–320 nm, emission: 390–470 nm; (3) excitation: 260–285 nm, emission: 320–370 nm; (4) excitation: 310–360 nm, emission: 370–470 nm; and (5) excitation: 375–435 nm, emission: 440–520 nm, in which majority of fluorescence comes from the aromatic amino acids, phenolic compounds, and fluorescent Maillard reaction products. Principal component analysis confirmed these findings and showed that 90% of variance in fluorescence is accumulated in the first two principal components, which can be used for the discrimination of fake honey samples. The classification of honey from fluorescence data is demonstrated with a linear discriminant analysis (LDA). When subjected to LDA, total fluorescence intensities of selected spectral regions provided classification of honey (natural or adulterated) with 100% accuracy. In addition, it is demonstrated that intensities of honey emissions in each of these spectral regions may serve as criteria for the discrimination between natural and fake honey.

Funder

Ministarstvo Prosvete, Nauke i Tehnološkog Razvoja

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3