Affiliation:
1. School of Electrical and Mechanical Engineering, Pingdingshan University, Pingdingshan 467000, China
Abstract
The bipedal robot should be able to maintain standing balance even in the presence of disturbing forces. The control schemes of bipedal robot are conventionally developed based on system models or fixed torque-ankle states, which often lack robustness. In this paper, a variable impedance control based on artificial muscle activation is investigated for bipedal robotic standing balance to address this limitation. The robustness was improved by applying the artificial muscle activation model to adjust the impedance parameters. In particular, an ankle variable impedance model was used to obtain the antidisturbance torque which combined with the ankle dynamic torque to estimate the desired ankle torque for robotic standing balance. The simulation and prototype experimentation results demonstrate that the control method improves the robustness of bipedal robotic standing balance control.
Funder
National Natural Science Foundation of China
Subject
General Computer Science,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献