Further Analysis of the Passive Dynamics of the Compass Biped Walker and Control of Chaos via Two Trajectory Tracking Approaches

Author:

Added Essia1,Gritli Hassène12ORCID,Belghith Safya1

Affiliation:

1. Laboratory of Robotics, Informatics and Complex Systems (RISC-Lab, LR16ES07), National Engineering School of Tunis, University of Tunis El Manar, BP. 37, Le Belvédère 1002, Tunis, Tunisia

2. Higher Institute of Information and Communication Technologies, University of Carthage, Borj-Cedria 1164, Tunis, Tunisia

Abstract

This work consists in analyzing and controlling the walk of the compass-type bipedal walker in order to stabilize its passive dynamic gait. The dynamic walking of the compass-gait walker is modeled by an impulsive hybrid nonlinear system. This impulsive hybrid nature is considered very complex as it can generate unwanted phenomena such as chaos and bifurcations. We show first by means of bifurcation diagrams and by varying the slope angle of the walking surface and also the length of the lower leg segment that the passive dynamic walking exhibits successive period-doubling bifurcations leading to chaos. Furthermore, in order to control chaos and hence obtain one-periodic walking behavior, we propose two control approaches based on tracking a desired trajectory. The first method consists in tracking the one-periodic passive dynamic walking generated by the compass model itself. The second control method lies in following a planned trajectory using the 4th-order Spline function. An optimization method is also achieved to design the parameters of the desired trajectory. Some features of the period-1 passive gait are used in the design of such Spline trajectory. Finally, we show some simulation results revealing the efficiency of the two proposed control methods in the control of the chaotic passive gait of the compass-gait walker. Moreover, we demonstrate the stabilization of the bipedal locomotion of the compass biped walker on different slopes: descending and ascending inclined planes and walking on a level ground. A comparison with the OGY-based control method is also performed to further show the superiority of these two control approaches.

Funder

Ministry of Higher Education and Scientific Research

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Model analysis and control of biped dynamic walker with fault steps in a gait cycle;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2023-12-07

2. Design, Control, and Validation of a Symmetrical Hip and Straight-Legged Vertically-Compliant Bipedal Robot;Biomimetics;2023-08-01

3. Design and Modeling of an Exoskeleton Robotic System for the Rehabilitation of Lower Limbs;2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET);2023-04-29

4. Lower Limb Exoskeletons for Pediatric Gait Rehabilitation: A Brief Review of Design, Actuation, and Control Schemes;2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET);2023-04-29

5. Investigation of the Compass Biped Walker's Passive Dynamics and Trajectory Tracking Method for Chaos Control;2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET);2023-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3