Analysis and Optimization of Low-Speed Road Noise in Electric Vehicles

Author:

Yu Wentao1ORCID

Affiliation:

1. School of Automotive Engineering, Tianjin Vocational Institute, Tianjin 300000, China

Abstract

When a certain electric vehicle is driving at a constant speed of 40 km/h on the rough asphalt road, the rear passenger can obviously feel the ear pressure, which seriously affects the comfort. Through the analysis of objective data, it was found that the problem was caused by the road excitation, which leads to the coupling between the mode of the backup door and the mode of the acoustic cavity, and causes the resonance of the car cavity, thus causing the ear pressure sensation. To solve this problem, this paper optimizes the backup door by means of experiment and simulation, increases the dynamic vibration absorber, makes its modal frequency avoid the acoustic cavity modal frequency, and achieves the purpose of reducing the interior noise. After optimization, the vehicle noise is reduced by 8 dBA at 42 Hz under 40 km/h working condition of rough road surface, and the ear pressure sensation is reduced at the same time, thus improving the NVH (noise, vibration, and harshness) performance of the vehicle.

Funder

School-enterprise collaborative innovation projects at Tianjin Vocational Institute

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3