Dough-Stage Maize (Zea mays L.) Ear Recognition Based on Multiscale Hierarchical Features and Multifeature Fusion

Author:

Jia Honglei1,Qu Minghao2,Wang Gang23ORCID,Walsh Michael J.4,Yao Jurong5,Guo Hui1,Liu Huili2

Affiliation:

1. Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China

2. College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China

3. Department of Geography and Regional Research, University of Vienna, Vienna 1090, Austria

4. Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA

5. First Administrative Department of People’s Canal, Dujiangyan Sichuan Province, Chengdu 611000, China

Abstract

Crop-related object recognition is of great importance in realizing intelligent agricultural machinery. Maize (Zea mays. L.) ear recognition could be a representative of crop-related object recognition, which is a critical technological premise for realizing automatic maize ear picking and maize yield prediction. In order to recognize maize ears in dough stage, this study combined deep learning and image processing, which have advantages of feature extraction and hardware flexibility, respectively. LabelImage was applied to mark and label maize plants, based on the deep learning framework TensorFlow, and this study developed multiscale hierarchical feature extraction together with quadruple-expanded convolutional kernels. To recognize the whole maize plant, 1250 images were acquired for training the recognition model, and its performance in a test set showed that the recognition accuracy was 99.47%. Subsequently, multifeatures of maize ear were determined, and the optimum binary threshold was obtained by fitting Gaussian distribution in the subblock image. Consequently, the maize ear was recognized by morphological process which was conducted by Python and OpenCV. Experiment was conducted in August 2018, and 10800 images were acquired for testing this algorithm. Experimental results showed that the average recognition accuracy was 97.02% and time consumption was 0.39 s for each image, which could meet a forward speed of 4.61 km/h for combine harvesters.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3