The Effects of RBP4 and Vitamin D on the Proliferation and Migration of Vascular Smooth Muscle Cells via the JAK2/STAT3 Signaling Pathway

Author:

Zhou Wan1ORCID,Wang Wei1,Yuan Xiao-Jing2,Xiao Chun-Chun1,Xing Yan1,Ye Shan-Dong1ORCID,Liu Qiang3ORCID

Affiliation:

1. Laboratory for Diabetes, Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001 Anhui Province, China

2. The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China

3. Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China

Abstract

Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) are one of the main causes of the development of diabetic atherosclerotic process. The aim of our study was to assess the role of RBP4 in the proliferation and migration of VSMCs and the inhibitory effect of vitamin D on the mechanisms. In an in vivo experiment, rats were randomly classified into 6 groups: the control group, diabetic rats, diabetic atherosclerotic rats (diabetic rats intraperitoneally injected with RBP4), diabetic atherosclerotic rats treated with 0.075 μg kg-1 d-1 vitamin D, 0.15 μg kg-1 d-1 vitamin D and 0.3 μg kg-1 d-1 vitamin D. We found that the levels of JAK2, STAT3, cylinD1, and Bcl-2 were increased in diabetic atherosclerotic rats, and these increases were improved after vitamin D supplementation. Furthermore, to investigate the underlying molecular mechanisms, cells were cultured with glucose in the presence of RBP4 and the absence of RBP4, respectively, and vitamin D of different concentrations and different intervention times was simultaneously adopted. The proliferation and migration of VSMCs was enhanced and the levels of JAK2, STAT3, cyclinD1, and Bcl-2 were increased in the cells transfected with RBP4 overexpression plasmid. Moreover, vitamin D supplementation was detected to lower the expressions of JAK2, STAT3, cyclinD1, and Bcl-2 and inhibit the abnormal proliferation of VSMCs caused by the RBP4/JAK2/STAT3 signaling pathway. RBP4 can promote the proliferation and migration of VSMCs and contributes to the development of diabetic macroangiopathy via regulating the JAK2/STAT3 signaling pathway. This mechanism of RBP4 can be inhibited by vitamin D supplementation.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3