Affiliation:
1. Guangzhou Metro Group Co., Ltd., Guangzhou 510330, China
2. South China University of Technology, Guangzhou 510640, China
3. Guangzhou Metro Design & Research Institute Co., Ltd., Guangzhou 510010, China
Abstract
Iris recognition refers to identifying individuals based on iris patterns, which have been widely used in security systems, such as subway security and access control attendance, because everyone has a unique iris shape. In the study, we propose an OCaNet model for the iris recognition task. First, binarized threshold segmentation is used to locate the pupil and the pupil boundary is obtained; then, the Hough transform is applied to locate the outer edge of the iris; according to the located pupil and iris, the iris area image is obtained through image segmentation; finally, the iris image is normalized to adjust each original image to the same size and corresponding position, so as to eliminate the influence of translation, scaling, and rotation on iris recognition. Second, the normalized iris images are both input into the octave convolution module and attention module. The octave convolution module is used to extract the shape and contour features of the iris by decomposing the feature map into high and low frequencies. The attention module is applied to extract the color and texture characteristics of the iris. Finally, the two feature maps are concatenated and produce a distribution of output classes. Experimental results show that the proposed OCaNet model is significantly more accurate.
Funder
National Basic Research Program of China
Subject
General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献