Elastic-plastic analysis of circular tunnel based on unified strength theory and considering multiple plastic zones

Author:

Gao Feng1,Li Shanqing1ORCID

Affiliation:

1. MOE Key Laboratory of Disaster Forecast and Control in Engineering, School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China

Abstract

Considering that the internal friction angle of the surrounding rock is not a constant but a function of the mean normal stress, and the unified strength theory (UST) is used as the plastic condition of the tunnel surrounding rock, the plastic zone of the circular tunnel surrounding rock is divided into multiple annular regions. For different plastic zones, there are different yield conditions represented by different stress functions, the elastic-plastic analysis of circular tunnels is performed by using the piecewise linearization of nonlinear yield function, stress and displacement in the elastic-plastic zone and the radius of the plastic zone are obtained by combining the equilibrium equations. It is shown that the radius of the plastic zone increases, the radial stresses in the elastic-plastic zone and the circumferential stresses in the plastic zone become smaller and the circumferential stresses in the elastic zone becomes larger compared with that of only one plastic zone. By using single factor analysis method, the calculated values of the tunnel displacements and plastic radii by UST were compared with those obtained by the Mohr-Coulomb (M-C) criterion, Drucker-Prager (D-P) criterion, and Zienkiewicz-Pande (Z-P) criterion. The analysis shows that under the same conditions, the solution of UST is smaller than M-C criterion and D-P criterion, therefore, the selection of rock strength criterion has great influence on the calculation of rock mechanics and engineering, the proper application of UST will guarantee the safety of engineering practice and have more practical value.

Funder

the Science and Technology Scheme of Guangzhou City

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3