Usages of Spark Framework with Different Machine Learning Algorithms

Author:

Ali Mohamed Mohamed1ORCID,El-henawy Ibrahim Mahmoud1,Salah Ahmad1ORCID

Affiliation:

1. Computer Science Department, Faculty of Computers and Informatics, Zagazig University, Zagazig, Egypt

Abstract

Sensors, satellites, mobile devices, social media, e-commerce, and the Internet, among others, saturate us with data. The Internet of Things, in particular, enables massive amounts of data to be generated more quickly. The Internet of Things is a term that describes the process of connecting computers, smart devices, and other data-generating equipment to a network and transmitting data. As a result, data is produced and updated on a regular basis to reflect changes in all areas and activities. As a consequence of this exponential growth of data, a new term and idea known as big data have been coined. Big data is required to illuminate the relationships between things, forecast future trends, and provide more information to decision-makers. The major problem at present, however, is how to effectively collect and evaluate massive amounts of diverse and complicated data. In some sectors or applications, machine learning models are the most frequently utilized methods for interpreting and analyzing data and obtaining important information. On their own, traditional machine learning methods are unable to successfully handle large data problems. This article gives an introduction to Spark architecture as a platform that machine learning methods may utilize to address issues regarding the design and execution of large data systems. This article focuses on three machine learning types, including regression, classification, and clustering, and how they can be applied on top of the Spark platform.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference22 articles.

1. Big data: a review;S. Sagiroglu

2. Deep transfer learning with Apache Spark to detect COVID-19 in chest x-ray images;H. Benbrahim;Romanian Journal of Information Science and Technology,2020

3. Artificial neural networks based techniques for anomaly detection in Apache Spark

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3