Machine learning based data collection protocol for intelligent transport systems: a real-time implementation on Dublin M50, Ireland

Author:

Gillani MaryamORCID,Niaz Hafiz AdnanORCID

Abstract

AbstractThe continuous global urbanization with rapid and dynamic transitioning in traffic situations among highly populated cities results in difficulty for data collection and communication. Data collection for millions of vehicles hinders by various problems, i.e., higher cost of energy, time, space, and storage resources. Moreover, higher data traffic results in higher delays, larger throughput, excessive bottlenecks, and frequent repetition of data. To better facilitate the aforementioned challenges and to provide a solution, we have proposed a lightweight Machine Learning based data collection protocol named ML-TDG to effectively deal with higher data volumes in a real-time traffic environment capable of bringing the least burden on the network while utilizing less space, time, and energy. ML-TDG is functional based on Apache Spark, an effective data processing engine that indexes the data based on two logs, i.e., old commuters or frequent/daily commuters and second new/occasional commuters. The proposed protocol’s main idea is to utilize real-time traffic, distinguish the indexes in parallel based on two assigned logs criteria to train the network, and collect data with the least sources. For energy and time optimization, dynamic segmentation switching is introduced which is an intelligent road segments division and switching for reducing bottlenecks and replication. ML-TDG is tested and verified on Dublin, Ireland’s busiest motorway M50. ML-TDG performs the data collection, data sorting, and network training to decide the next execution altogether for better optimization every time. The experimental results verify that our proposed protocol is attaining higher performance with lower resource requirements along with rich and time-efficient sustainable data collection clusters in comparison with baseline protocols.

Funder

University College Dublin

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,Engineering (miscellaneous),Information Systems,Artificial Intelligence

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3