Feature Selection Using Genetic Algorithms for the Generation of a Recognition and Classification of Children Activities Model Using Environmental Sound

Author:

García-Dominguez Antonio1ORCID,Galván-Tejada Carlos E.1ORCID,Zanella-Calzada Laura A.1ORCID,Gamboa-Rosales Hamurabi1ORCID,Galván-Tejada Jorge I.2,Celaya-Padilla José M.1,Luna-García Huizilopoztli1,Magallanes-Quintanar Rafael1

Affiliation:

1. Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas 98000, Zac, Mexico

2. CONACYT, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas 98000, Zac, Mexico

Abstract

In the area of recognition and classification of children activities, numerous works have been proposed that make use of different data sources. In most of them, sensors embedded in children’s garments are used. In this work, the use of environmental sound data is proposed to generate a recognition and classification of children activities model through automatic learning techniques, optimized for application on mobile devices. Initially, the use of a genetic algorithm for a feature selection is presented, reducing the original size of the dataset used, an important aspect when working with the limited resources of a mobile device. For the evaluation of this process, five different classification methods are applied, k-nearest neighbor (k-NN), nearest centroid (NC), artificial neural networks (ANNs), random forest (RF), and recursive partitioning trees (Rpart). Finally, a comparison of the models obtained, based on the accuracy, is performed, in order to identify the classification method that presents the best performance in the development of a model that allows the identification of children activity based on audio signals. According to the results, the best performance is presented by the five-feature model developed through RF, obtaining an accuracy of 0.92, which allows to conclude that it is possible to automatically classify children activity based on a reduced set of features with significant accuracy.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3