Formal Verification of Hardware Components in Critical Systems

Author:

Khan Wilayat1ORCID,Kamran Muhammad2ORCID,Naqvi Syed Rameez1ORCID,Khan Farrukh Aslam3ORCID,Alghamdi Ahmed S.2,Alsolami Eesa2

Affiliation:

1. Department of Electrical and Computer Engineering, COMSATS University Islamabad, Wah Campus, Pakistan

2. Department of Cyber Security, College of Computer Science and Engineering, University of Jeddah, Jeddah, Saudi Arabia

3. Center of Excellence in Information Assurance (CoEIA), King Saud University, Riyadh, Saudi Arabia

Abstract

Hardware components, such as memory and arithmetic units, are integral part of every computer-controlled system, for example, Unmanned Aerial Vehicles (UAVs). The fundamental requirement of these hardware components is that they must behave as desired; otherwise, the whole system built upon them may fail. To determine whether or not a component is behaving adequately, the desired behaviour of the component is often specified in the Boolean algebra. Boolean algebra is one of the most widely used mathematical tools to analyse hardware components represented at gate level using Boolean functions. To ensure reliable computer-controlled system design, simulation and testing methods are commonly used to detect faults; however, such methods do not ensure absence of faults. In critical systems’ design, such as UAVs, the simulation-based techniques are often augmented with mathematical tools and techniques to prove stronger properties, for example, absence of faults, in the early stages of the system design. In this paper, we define a lightweight mathematical framework in computer-based theorem prover Coq for describing and reasoning about Boolean algebra and hardware components (logic circuits) modelled as Boolean functions. To demonstrate the usefulness of the framework, we (1) define and prove the correctness of principle of duality mechanically using a computer tool and all basic theorems of Boolean algebra, (2) formally define the algebraic manipulation (step-by-step procedure of proving functional equivalence of functions) used in Boolean function simplification, and (3) verify functional correctness and reliability properties of two hardware components. The major advantage of using mechanical theorem provers is that the correctness of all definitions and proofs can be checked mechanically using the type checker and proof checker facilities of the proof assistant Coq.

Funder

Deanship of Scientific Research, King Saud University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Overview of SPIN in Software Model Checking;2021 IEEE Sixth International Conference on Data Science in Cyberspace (DSC);2021-10

2. CoCEC: An Automatic Combinational Circuit Equivalence Checker Based on the Interactive Theorem Prover;Complexity;2021-05-25

3. ( τ ,  m )‐ slicedBucket privacy model for sequential anonymization for improving privacy and utility;Transactions on Emerging Telecommunications Technologies;2020-10-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3