A Lightweight Human Action Classification Method for Green IoT Sport Applications

Author:

Xiao Da1ORCID,Huang Tianyu12ORCID,Li Yihao1ORCID,Liu Chang1ORCID,Zhang Fuquan23ORCID

Affiliation:

1. Department of Computer Science and Technology, Beijing Institute of Technology, 100081, China

2. Beijing Key Laboratory of Digital Performance and Simulation Technology, 100081, China

3. College of Computer and Control Engineering, Minjiang University, 350108, China

Abstract

This paper proposes a lightweight human action classification method for Green Internet of Things (IoT) sport applications. This method classifies the human motion data collected by wearables or other IoT devices with energy-efficient techniques, by enabling a small number of sample training and incremental classification to achieve the purpose of energy-efficient. To lessen the complexity of the model and reduce the number of samples required for parameter estimation, we propose a shared Hidden Conditional Random Field (sHCRF) model. The sHCRF model adds a shared-classification layer structure to reduce the parameter computation. In the experiments, the classification accuracy of the sHCRF model is above 95%. This paper introduces an incremental learning method based on knowledge distillation. The new model suppresses the forgetting of existing classification knowledge while fitting new data to learn new classification knowledge. In the incremental scenarios, the classification accuracy of the sHCRF model is above 70%. The experimental results show that this method can lightly implement convenient and fast automatic classification of action acquisition.

Funder

Ministry of Science and Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3