Multifeature Fusion Detection Method for Fake Face Attack in Identity Authentication

Author:

Liu Haiqing1,Zheng Shiqiang1ORCID,Hao Shuhua1ORCID,Li Yuancheng1ORCID

Affiliation:

1. School of Control and Computer Engineering, North China Electric Power University, Beijing, China

Abstract

With the rise in biometric-based identity authentication, facial recognition software has already stimulated interesting research. However, facial recognition has also been subjected to criticism due to security concerns. The main attack methods include photo, video, and three-dimensional model attacks. In this paper, we propose a multifeature fusion scheme that combines dynamic and static joint analysis to detect fake face attacks. Since the texture differences between the real and the fake faces can be easily detected, LBP (local binary patter) texture operators and optical flow algorithms are often merged. Basic LBP methods are also modified by considering the nearest neighbour binary computing method instead of the fixed centre pixel method; the traditional optical flow algorithm is also modified by applying the multifusion feature superposition method, which reduces the noise of the image. In the pyramid model, image processing is performed in each layer by using block calculations that form multiple block images. The features of the image are obtained via two fused algorithms (MOLF), which are then trained and tested separately by an SVM classifier. Experimental results show that this method can improve detection accuracy while also reducing computational complexity. In this paper, we use the CASIA, PRINT-ATTACK, and REPLAY-ATTACK database to compare the various LBP algorithms that incorporate optical flow and fusion algorithms.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3