Low Cost Skin Segmentation Scheme in Videos Using Two Alternative Methods for Dynamic Hand Gesture Detection Method

Author:

Thabet Eman1ORCID,Khalid Fatimah1ORCID,Suhaiza Sulaiman Puteri1ORCID,Yaakob Razali1

Affiliation:

1. Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Selangor, Malaysia

Abstract

Recent years have witnessed renewed interest in developing skin segmentation approaches. Skin feature segmentation has been widely employed in different aspects of computer vision applications including face detection and hand gestures recognition systems. This is mostly due to the attractive characteristics of skin colour and its effectiveness to object segmentation. On the contrary, there are certain challenges in using human skin colour as a feature to segment dynamic hand gesture, due to various illumination conditions, complicated environment, and computation time or real-time method. These challenges have led to the insufficiency of many of the skin color segmentation approaches. Therefore, to produce simple, effective, and cost efficient skin segmentation, this paper has proposed a skin segmentation scheme. This scheme includes two procedures for calculating generic threshold ranges in Cb-Cr colour space. The first procedure uses threshold values trained online from nose pixels of the face region. Meanwhile, the second procedure known as the offline training procedure uses thresholds trained out of skin samples and weighted equation. The experimental results showed that the proposed scheme achieved good performance in terms of efficiency and computation time.

Publisher

Hindawi Limited

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3