Affiliation:
1. Department of Civil Engineering, Petra Christian University, Jalan Siwalankerto 121-131, Surabaya 60236, Indonesia
2. PT. Sarana Data Persada, Margorejo Indah XIX/35-Blok D-507, Surabaya, Indonesia
Abstract
This research presents a novel hybrid prediction technique, namely, self-tuning least squares support vector machine (ST-LSSVM), to accurately model the friction capacity of driven piles in cohesive soil. The hybrid approach uses LS-SVM as a supervised-learning-based predictor to build an accurate input-output relationship of the dataset and SOS method to optimize the σ and γ parameters of the LS-SVM. Evaluation and investigation of the ST-LSSVM were conducted on 45 training data and 20 testing data of driven pile load tests that were compiled from previous studies. The prediction accuracy of the ST-LSSVM was then compared to other machine learning methods, namely, LS-SVM and BPNN, and was benchmarked with the previous results by neural network (NN) from Goh using coefficient of correlation (R), mean absolute error (MAE), and root mean square error (RMSE). The comparison showed that the ST-LSSVM performed better than LS-SVM, BPNN, and NN in terms of R, RMSE, and MAE. This comprehensive evaluation confirmed the capability of hybrid approach SOS and LS-SVM to modeling the accurate friction capacity of driven piles in clay. It makes for a reliable and robust assistance tool in helping all geotechnical engineers estimate friction pile capacity.
Subject
Civil and Structural Engineering
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献