Optimizing the Prediction Accuracy of Friction Capacity of Driven Piles in Cohesive Soil Using a Novel Self-Tuning Least Squares Support Vector Machine

Author:

Prayogo Doddy1ORCID,Susanto Yudas Tadeus Teddy12

Affiliation:

1. Department of Civil Engineering, Petra Christian University, Jalan Siwalankerto 121-131, Surabaya 60236, Indonesia

2. PT. Sarana Data Persada, Margorejo Indah XIX/35-Blok D-507, Surabaya, Indonesia

Abstract

This research presents a novel hybrid prediction technique, namely, self-tuning least squares support vector machine (ST-LSSVM), to accurately model the friction capacity of driven piles in cohesive soil. The hybrid approach uses LS-SVM as a supervised-learning-based predictor to build an accurate input-output relationship of the dataset and SOS method to optimize the σ and γ parameters of the LS-SVM. Evaluation and investigation of the ST-LSSVM were conducted on 45 training data and 20 testing data of driven pile load tests that were compiled from previous studies. The prediction accuracy of the ST-LSSVM was then compared to other machine learning methods, namely, LS-SVM and BPNN, and was benchmarked with the previous results by neural network (NN) from Goh using coefficient of correlation (R), mean absolute error (MAE), and root mean square error (RMSE). The comparison showed that the ST-LSSVM performed better than LS-SVM, BPNN, and NN in terms of R, RMSE, and MAE. This comprehensive evaluation confirmed the capability of hybrid approach SOS and LS-SVM to modeling the accurate friction capacity of driven piles in clay. It makes for a reliable and robust assistance tool in helping all geotechnical engineers estimate friction pile capacity.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3