Intercomparison and Validation of MIRS, MSPPS, and IMS Snow Cover Products

Author:

Chiu Jessica1,Paredes-Mesa Stephany12,Lakhankar Tarendra1ORCID,Romanov Peter13,Krakauer Nir1,Khanbilvardi Reza1,Ferraro Ralph3

Affiliation:

1. NOAA-Center for Earth System Sciences and Remote Sensing Technologies (CESSRST), The City College of New York, New York, NY 10031, USA

2. Department of Environmental Protection, Marlboro, NY 12542, USA

3. Center for Satellite Applications and Research (STAR), NOAA/NESDIS, College Park, MD 20740, USA

Abstract

We evaluate the agreement between automated snow products generated from satellite observations in the microwave bands within NESDIS Microwave Integrated Retrieval System (MIRS) and Microwave Surface and Precipitation Products System (MSPPS), on the one hand, and snow cover maps produced with manual input by the NOAA’s Interactive Multisensor Snow and Ice Mapping System (IMS), on the other. MIRS uses physically based retrievals of atmospheric and surface state parameters to provide daily global maps of snow cover and snow water equivalent at 50 km resolution. The older MSPPS delivers daily global maps at the spatial resolution of 45 km and utilizes mostly simple empirical algorithms to retrieve information. IMS daily maps of snow and sea ice cover for the Northern Hemisphere are produced interactively through the analysis of satellite imagery in the visible, infrared, and microwave spectral bands. We compare the performances of these products across the Northern Hemisphere for 2014–2017, using IMS as the standard. In this intercomparison, the daily overall agreement of the automated snow products with IMS ranges between 88% and 99% for MIRS and 87% and 99% for MSPPS. However, daily snow sensitivity is lower, ranging between 36% and 90% for MIRS and 26% and 91% for MSPPS. We analyze this disagreement rate as a function of terrain and land cover type, finding that, relative to IMS, MIRS shows fewer false positives but more false negatives than MSPPS over high elevation and grassland areas.

Funder

National Oceanic and Atmospheric Administration

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3