Characterization of Spirulina-Alginate Beads Formed Using Ionic Gelation

Author:

Rajmohan Deepak1,Bellmer Danielle2ORCID

Affiliation:

1. Happy Family, 3380 W. Americana Terrace, Suite 360, Boise, ID 83706, USA

2. Biosystems & Agricultural Engineering, 108 Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078, USA

Abstract

Spirulina (blue-green algae) is one of the cheapest sources of protein and essential vitamins. However, bitterness and bad flavor of spirulina protein may limit its use in food products. In this study, spirulina was encapsulated using ionic gelation to facilitate protein delivery. The objective was to study the effects of different types of gelation methods on particle size, texture, morphology, and crude protein content of the beads. Spirulina protein was encapsulated in alginate using both internal and external gelation methods and varying concentrations of sodium alginate and calcium chloride. A total of six different treatments were evaluated, and characterization of the beads included crude protein content, hardness measured using a texture analyzer, and thickness and width of the beads. The morphology was also studied using a scanning electron microscope (SEM). Results from the texture analysis show that the hardness of the external gelation beads is three times that of the internal gelation beads, and an increase in the alginate percentage in both gelation methods increased the firmness of the beads. The crude protein content was significantly higher with the beads formed using external gelation than with internal gelation. The SEM micrographs also show that the surface morphology of the beads produced with internal gelation has a more heterogeneous structure. Overall, the beads formed with external gelation were superior to those formed with internal gelation methods. Results from this study suggest that alginate is suitable for encapsulation of spirulina protein and these hydrogel beads could be used to enhance the protein delivery and facilitate the design of foods with alternative sources of protein.

Funder

Robert M. Kerr Food

Publisher

Hindawi Limited

Subject

Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3