Single- versus Multiobjective Optimization for Evolution of Neural Controllers in Ms. Pac-Man

Author:

Tan Tse Guan1ORCID,Teo Jason1,Chin Kim On1

Affiliation:

1. Evolutionary Computing Laboratory, School of Engineering and Information Technology, Universiti Malaysia, Jalan (UMS), 88400 Kota Kinabalu, Sabah, Malaysia

Abstract

The objective of this study is to focus on the automatic generation of game artificial intelligence (AI) controllers for Ms. Pac-Man agent by using artificial neural network (ANN) and multiobjective artificial evolution. The Pareto Archived Evolution Strategy (PAES) is used to generate a Pareto optimal set of ANNs that optimize the conflicting objectives of maximizing Ms. Pac-Man scores (screen-capture mode) and minimizing neural network complexity. This proposed algorithm is called Pareto Archived Evolution Strategy Neural Network or PAESNet. Three different architectures of PAESNet were investigated, namely, PAESNet with fixed number of hidden neurons (PAESNet_F), PAESNet with varied number of hidden neurons (PAESNet_V), and the PAESNet with multiobjective techniques (PAESNet_M). A comparison between the single- versus multiobjective optimization is conducted in both training and testing processes. In general, therefore, it seems that PAESNet_F yielded better results in training phase. But the PAESNet_M successfully reduces the runtime operation and complexity of ANN by minimizing the number of hidden neurons needed in hidden layer and also it provides better generalization capability for controlling the game agent in a nondeterministic and dynamic environment.

Publisher

Hindawi Limited

Subject

Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pareto Multi-task Deep Learning;Artificial Neural Networks and Machine Learning – ICANN 2020;2020

2. Vision-based guidance for fixed-wing unmanned aerial vehicle autonomous carrier landing;Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering;2018-07-25

3. Metaheuristic research: a comprehensive survey;Artificial Intelligence Review;2018-01-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3