1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal $$\mu $$-distributions and the choice of the reference point. In: FOGA, pp. 87–102 (2009)
2. Brockman, G., et al.: OpenAI Gym (2016). https://gym.openai.com
3. Conti, E., et al.: Improving exploration in evolution strategies for deep reinforcement learning via a population of novelty-seeking agents. In: NeurIPS 2018, Montreal, Canada (2018)
4. De Jong, K.: Evolutionary Computation - A Unified Approach. The MIT Press, Cambridge (2006)
5. Lecture Notes in Computer Science;D Dyankov,2019