Affiliation:
1. College of Electronic and Information Engineering, Shenyang Aerospace University, Shenyang 110136, China
Abstract
A deep learning architecture based on Extensible Neural Networks is proposed for modulation classification in multipath fading channel. Expanded Neural Networks (ENN) are established based on energy natural logarithm model. The model is set up using hidden layers. Modulation classification based on ENN is implemented through the amplitude, phase, and frequency hidden network, respectively. In order to improve Probability of Correct classification (PCC), one or more communication signal features are extracted using hidden networks. Through theoretical proof, ENN learning network is demonstrated to be effective in improving PCC using amplitude, phase, and the frequency weight subnetwork, respectively. Compared with the traditional algorithms, the simulation results show that the proposed ENN has higher PCC than traditional algorithm for modulation classification within the same training sequence and Signal to Noise Ratio (SNR).
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献