Automatic modulation identification for underwater acoustic signals based on the space–time neural network

Author:

Lyu Yaohui,Cheng Xiao,Wang Yan

Abstract

In general, CNN gives the same weight to all position information, which will limit the expression ability of the model. Distinguishing modulation types that are significantly affected by the underwater environment becomes nearly impossible. The transformer attention mechanism is used for the feature aggregation, which can adaptively adjust the weight of feature aggregation according to the relationship between the underwater acoustic signal sequence and the location information. In this paper, a novel aggregation network is designed for the task of automatic modulation identification (AMI) in underwater acoustic communication. It is feasible to integrate the advantages of both CNN and transformer into a single streamlined network, which is productive and fast for signal feature extraction. The transformer overcomes the constraints of sequential signal input, establishing parallel connections between different modulations. Its attention mechanism enhances the modulation recognition by prioritizing the key information. Within the transformer network, the proposed network is strategically incorporated to form a spatial–temporal structure. This structure contributes to improved classification results, and it can obtain more deep features of underwater acoustic signals, particularly at lower signal-to-noise ratios (SNRs). The experiment results achieve an average of 89.4% at −4 dB ≤ SNR ≤ 0 dB, which exceeds other state-of-the-art neural networks.

Funder

Natural Science Foundation of Shandong Province

Publisher

Frontiers Media SA

Reference33 articles.

1. Modulation classification in fading channels using antenna arrays;Abdi,2004

2. A fast automatic modulation recognition algorithm and its implementation in a spectrum monitoring application;Boudreau,2000

3. Maximum-likelihood classification of digital amplitude-phase modulated signals in flat fading non-gaussian channels;Chavali;IEEE Trans. Commun.,2011

4. Automatic modulation classification scheme based on lstm with random erasing and attention mechanism;Chen;IEEE Access,2020

5. Software-defined underwater acoustic networks: Toward a high-rate real-time reconfigurable modem;Demirors;IEEE Commun. Magazine,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3