Deep Ensemble Learning for Human Action Recognition in Still Images

Author:

Yu Xiangchun12ORCID,Zhang Zhe2,Wu Lei2,Pang Wei3,Chen Hechang24,Yu Zhezhou2ORCID,Li Bin5ORCID

Affiliation:

1. School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China

2. College of Computer Science and Technology, Jilin University, Changchun 130012, China

3. School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK

4. School of Artificial Intelligence, Jilin University, Changchun 130012, China

5. School of Information Engineering, Northeast Electric Power University, Jilin 132012, China

Abstract

Numerous human actions such as “Phoning,” “PlayingGuitar,” and “RidingHorse” can be inferred by static cue-based approaches even if their motions in video are available considering one single still image may already sufficiently explain a particular action. In this research, we investigate human action recognition in still images and utilize deep ensemble learning to automatically decompose the body pose and perceive its background information. Firstly, we construct an end-to-end NCNN-based model by attaching the nonsequential convolutional neural network (NCNN) module to the top of the pretrained model. The nonsequential network topology of NCNN can separately learn the spatial- and channel-wise features with parallel branches, which helps improve the model performance. Subsequently, in order to further exploit the advantage of the nonsequential topology, we propose an end-to-end deep ensemble learning based on the weight optimization (DELWO) model. It contributes to fusing the deep information derived from multiple models automatically from the data. Finally, we design the deep ensemble learning based on voting strategy (DELVS) model to pool together multiple deep models with weighted coefficients to obtain a better prediction. More importantly, the model complexity can be reduced by lessening the number of trainable parameters, thereby effectively mitigating overfitting issues of the model in small datasets to some extent. We conduct experiments in Li’s action dataset, uncropped and 1.5x cropped Willow action datasets, and the results have validated the effectiveness and robustness of our proposed models in terms of mitigating overfitting issues in small datasets. Finally, we open source our code for the model in GitHub (https://github.com/yxchspring/deep_ensemble_learning) in order to share our model with the community.

Funder

Jiangxi University of Science and Technology

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3