Improved Genetic Algorithm with Two-Level Approximation Method for Laminate Stacking Sequence Optimization by Considering Engineering Requirements

Author:

An Haichao1,Chen Shenyan1,Huang Hai1

Affiliation:

1. School of Astronautics, Beihang University, XueYuan Road No. 37, Haidian District, Beijing 100191, China

Abstract

Laminated composites have been widely applied in aerospace structures; thus optimization of the corresponding stacking sequences is indispensable. Genetic algorithms have been popularly adopted to cope with the design of stacking sequences which is a combinatorial optimization problem with complicated manufacturing constraints, but they often exhibit high computational costs with many structural analyses. A genetic algorithm using a two-level approximation (GATLA) method was proposed previously by the authors to obtain the optimal stacking sequences, which requires significantly low computational costs. By considering practical engineering requirements, this method possesses low applicability in complicated structures with multiple laminates. What is more, it has relatively high dependence on some genetic algorithm control parameters. To address these problems, now we propose an improved GA with two-level approximation (IGATLA) method which includes improved random initial design, adaptive penalty fitness function, adaptive crossover probability, and variable mutation probability, as well as enhanced validity check criterion for multiple laminates. The efficiency and feasibility of these improvements are verified with numerical applications, including typical numerical examples and industrial applications. It is shown that this method is also able to handle large, real world, industrial analysis models with high efficiency.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3