Maximization of fundamental frequency and buckling load for the optimal stacking sequence design of laminated composite structures

Author:

An Haichao1,Chen Shenyan1,Huang Hai1

Affiliation:

1. School of Astronautics, Beihang University, Beijing, China

Abstract

The paper illustrates the application of a two-level approximation method to the lay-up design of laminated structures for maximization of fundamental frequency and buckling load with design constraints. Previously developed for the mass-minimization design, the approximation method was achieved by starting from an initial design of stacking sequence. Benchmark examples have verified its efficacy in dealing with the mass-reduction problems, but it does not have the capability to address the objective-maximization problems, which is mainly due to the limitation of the second-level approximate problem. In this work, this method is improved and extended for the consideration of objective maximization with more design constraints. The second-level approximate problem is reconstructed with mixed direct/reciprocal design variables, suitable for solving maximization problems. By varying different initial designs of stacking sequence and conducting repeated runs in the numerical examples, its efficiency is significantly shown after making comparisons with other methods.

Funder

the National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3