Design of an Optimized Asymmetric Multilevel Inverter with Reduced Components Using Newton-Raphson Method and Particle Swarm Optimization

Author:

Gireesh Kumar Devineni1,Venkata Sireesha Nagineni2,Ganesh Aman3,Kotb Hossam4ORCID,AboRas Kareem M.4ORCID,Zeinoddini-Meymand Hamed5ORCID,Kamel Salah6

Affiliation:

1. Department of Electrical and Electronics Engineering, B V Raju Institute of Technology, Narsapur 502313, Telangana, India

2. Department of Information Technology, Institute of Aeronautical Engineering, Dundigal, Hyderabad 500043, Telangana, India

3. Department of Electrical Engineering, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala 133203, India

4. Department of Electrical Power and Machines, Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt

5. Department of Electrical and Computer Engineering, Graduate University of Advanced Technology, Kerman, Iran

6. Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan 81542, Egypt

Abstract

Multilevel inverters have great scope in current developments of grid-connected solar PV systems. Two-level inverters are the simplest kind of multilevel inverter available (MLI). As the number of output levels is raised, the total harmonic distortion decreases. In classic MLI topologies, more electronic components are utilized to get higher-level outputs, which raise the cost, complexity, and volume of typical MLI installations. By reducing the design components, the cost of the system will be reduced. Furthermore, the two- and three-level inverters produce constant dv/dt output, which increases the stress on the power switches. This research proposes an asymmetric MLI topology that is suitable for PV applications and utilizes less number of DC sources and switches. The proposed inverter is controlled by selective harmonic elimination-based pulse width modulation (SHEPWM) to eliminate the lower-order dominant harmonics. The nonlinear equations produced by the SHEPWM are solved for the switching angles of the proposed inverter using the Newton-Raphson (NR) method and particle swarm optimization (PSO) method for various modulation indexes. The performance of the proposed inverter is analyzed based on the total harmonic distortion (THD) of the output for different operating levels of the inverter by comparing similar topologies in the literature. The THD obtained by the NR method is 7.3% and by using PSO is 4.23% at 0.9 modulation index.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3