A grey wolf optimization-based modified SPWM control scheme for a three-phase half bridge cascaded multilevel inverter

Author:

Nasser Abdelrahman M.,Refky Amr,Shatla Hamdy,Abdel-hamed Alaa M.

Abstract

AbstractThe Multilevel inverter (MLI) plays a pivotal role in Renewable Energy (RE) systems by offering a cost-effective and highly efficient solution for converting DC from Photovoltaic (PV) sources into AC at high voltages. In addition, an innovative technology holds immense significance as it not only enables the seamless integration of PV systems into the grid but also ensures optimal power generation, thereby contributing to the widespread adoption of RE and fostering a sustainable future. This paper presents a modified sinusoidal pulse width modulation (SPWM) control scheme for a three-phase half-bridge cascaded MLI-powered PV sources. The selection of the MLI configuration is motivated by its reduced number of switching components, which enhances system reliability and simplifies experimental implementation. Compared to the SPWM schemes which require (m−1) carriers that make the generation of the pulse circuit very complex, the proposed control scheme requires only three signals: a carrier signal, a triangular waveform, and a modulating signal. This approach significantly reduces the complexity of control and facilitates practical implementation. The proposed control scheme simulation is verified using MATLAB/SIMULINK Software. The grey wolf optimization (GWO) algorithm is implemented to determine the optimal switching angles of the proposed control scheme. The Total Harmonic Distortion (THD) objective is selected to be the fitness function to be minimized for improving the quality of the output waveforms. For verification, the results of the proposed GWO-based modified SPWM control scheme are compared with those obtained using both the Particle swarm Optimization (PSO) and Genetic algorithm (GA) used in the literature. Simulation results declared that the proposed control scheme improves performance, especially THD which is minimized to 6.8%. Experimental validation has been conducted by building a laboratory prototype of the proposed system. The experimental and simulation results gave acceptable and limited convergent results considering the experimental difficulties.

Funder

Al-Azhar University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3